Молекулярная диагностика генетических заболеваний: особенности и методы исследования

Молекулярная диагностика генетических заболеваний: особенности и методы исследования

Генетический анализ крови - это нечто, что напоминает сложное, долгое и дорогостоящее исследование, требующее использования оборудования на уровне адронного коллайдера. Однако это представление всего лишь миф. В наши дни генетические тесты - это один из рядовых методов лабораторной диагностики. Их используют для разных целей, включая определение индивидуальной реакции пациента на лекарственные средства, пренатальную диагностику, выявление наследственных заболеваний, определение родства и профилактические меры.

Дешифрирование генома человека является одним из главных прорывов ХХ века. Благодаря этому открытию мы узнали, как код каждого человека влияет на наш организм. Несмотря на то, что ученые до сих пор ведут дискуссии на эту тему, результаты многолетних исследований уже позволяют любому человеку получить доступ к молекулярно-генетической диагностике.

В данной статье мы расскажем о том, как можно узнать свой личный генетический "код" и зачем это нужно.

Молекулярно-генетическая диагностика – это относительно новый метод обследования организма, который позволяет определить различные вирусы и инфекции, а также точно выявить мутации генов, которые могут вызывать патологии и оценить риски возникновения различных наследственных и других заболеваний. Более того, это лишь часть возможностей, которые предоставляют возможность изучения ДНК.

Главным достоинством молекулярно-генетической диагностики является минимальный уровень медицинского вмешательства, поскольку проведение исследования проводится in vitro. Этот метод успешно применяется для диагностики заболеваний, переносимых эмбрионами, а также у основных и тяжело больных пациентов. Кровь из вены является самым распространенным материалом для исследования, но возможно выделение ДНК/РНК из других жидкостей и тканей: слюны, соскоба слизистой рта, выделений из половых органов, околоплодной жидкости, волос, ногтей и т.д.

Молекулярная диагностика является значительным шагом в направлении персонализированной медицины, которая позволяет учитывать все особенности конкретного пациента при обследовании и терапии.

Методы молекулярной диагностики широко используются в различных областях медицины. Рассмотрим основные задачи и сферы, где применяется данная технология.

  1. Выявление различных патологий. Для диагностики инфекционных и вирусных заболеваний, которые не удается определить традиционными методами, молекулярная диагностика является незаменимой. Благодаря ей можно обнаружить болезнь на ранних стадиях, когда еще нет внешних клинических проявлений.
  2. Исследование аллергических реакций. Молекулярная диагностика позволяет точнее определить аллерген, не требует прямого контакта с аллергеном и при этом является безопасной для пациента.
  3. Индивидуальная оценка рисков наследственных заболеваний. Молекулярная диагностика помогает выявить наличие генетических мутаций и определить риск передачи наследственной патологии. Знание об этом позволяет проводить профилактику болезней на основе изменения образа жизни.
  4. Перинатальная медицина. Методы молекулярной диагностики незаменимы для определения состояния здоровья эмбрионов, включая выявление синдромов Дауна, Эдвардса, Патау и других. Также они используются в области вспомогательных репродуктивных технологий.
  5. Фармакогенетика. Молекулярная диагностика позволяет определить, какие лекарства максимально эффективны у конкретного пациента, что особенно важно при лечении тяжелых заболеваний, включая онкологические.
  6. Спортивная медицина. Молекулярная диагностика также находит применение для определения спортивных перспектив, в том числе для узнавания, какой вид занятий принесет наибольшую пользу для здоровья или поможет достичь спортивных результатов.

Медики всерьез рассматривают перспективу персонализированной терапии, позволяющей подбирать препараты исходя из генетических особенностей каждого пациента. Молекулярная диагностика - это один из ключевых элементов такого подхода, который может значительно уменьшить риски побочных эффектов и увеличить эффективность лечения.

Генетические исследования обычно проводятся, когда пациент стремится получить информацию о своем здоровье и состоянии организма. Приведем несколько конкретных ситуаций, в которых рекомендуется обращаться к генетическим исследованиям:

  • Для установления точного диагноза. Нередко бывает, что пациентам неправильно определяют аллергены или появляется задержка в диагностировании вирусных заболеваний, что может затруднить эффективное лечение. В таких случаях результаты генетического анализа могут быть полезны.
  • Для профилактики возможных патологий. Если человек знает о своем повышенном риске заболевания раком или сердечно-сосудистыми заболеваниями, то проведение генетических исследований может помочь ему предпринять соответствующие меры по профилактике таких заболеваний и отказаться от вредных привычек.
  • Для повышения эффективности лечения. Например, онкологические заболевания имеют множество вариантов терапии. Если правильно определить, какой из методов будет наиболее эффективным, можно сэкономить время, а иногда — и спасти жизнь пациента.

Кроме того, существует ряд генетических исследований, связанных с планированием и рождением ребенка. Чаще всего родители обращаются к этим исследованиям по следующим причинам:

  • Для изучения генетической совместимости родителей, оценки рисков возможных наследственных заболеваний у будущего ребенка.
  • Для обнаружения возможных патологий плода в ранних стадиях беременности.
  • Для диагностики возможных заболеваний и аллергических реакций ребенка после рождения.
  • Для определения того, какие виды спорта, питания и образа жизни наиболее подходят ребенку.
  • Для установления отцовства или материнства.

Статья: Ход исследования

Какой бы метод молекулярно-генетического исследования вы не выбрали, он включает в себя ряд этапов. Они следующие:

  1. Взятие биоматериала. Чаще всего для исследования используют кровь пациента. После получения материала его маркируют и транспортируют в лабораторию.
  2. Выделение ДНК/РНК.
  3. Проведение исследований в соответствии с выбранным методом.
  4. Изучение и трактовку результатов.
  5. Выдачу заключительного мнения.

Молекулярно-генетическая диагностика является современным подходом к выявлению генетических заболеваний. С помощью специальных методов, основанных на изучении ДНК, можно обнаружить наличие определенных генетических мутаций и предрасположенности к различным заболеваниям.

Одним из методов молекулярно-генетической диагностики является полимеразная цепная реакция (ПЦР). С ее помощью можно увеличить количество ДНК в образце, чтобы определить наличие конкретных генетических вариантов. Этот метод используется для диагностики многих генетических заболеваний, таких как гемофилия и цистическая фиброз.

Другим методом молекулярно-генетической диагностики является секвенирование ДНК. Этот метод позволяет определить последовательность нуклеотидов в геноме и обнаружить наличие генетических мутаций, которые могут указывать на наличие заболевания.

Кроме того, молекулярно-генетическая диагностика может быть использована для выявления генетических факторов, которые могут быть связаны с возникновением определенных заболеваний, например, онкологических заболеваний. Эта информация может быть использована для предупреждения развития этих заболеваний и выбора наиболее эффективного лечения.

Таким образом, молекулярно-генетическая диагностика представляет собой важный подход к выявлению генетических заболеваний и предрасположенности к ним, что помогает улучшить охрану здоровья человека.

Методы молекулярной цитогенетики

Метод молекулярной цитогенетики используется для выявления наследственных заболеваний, врожденных пороков развития и психических отклонений. Основой метода является анализ хромосом с использованием специальных микроматриц, нанесенных на ДНК-чипы. Для проведения такого анализа из образца крови извлекают лимфоциты и помещают их в питательную среду на 48-72 часа. После этого проводится изучение хромосом.

Цитогенетический анализ применяется в основном для выявления причин бесплодия, невынашивания беременности, а также для уточнения диагноза у детей с подозрением на врожденные заболевания. Хотя метод специфичен, то есть может обнаружить только небольшое количество патологий, он практически не дает ошибок. Требуется отметить, что проведение цитогенетического анализа достаточно трудоемко и длительно, так как результат можно получить только через 20-30 дней после сдачи образца.

Метод полимеразной цепной реакции (ПЦР) – это фундаментальный и, до сегодняшнего дня, наиболее распространенный метод в молекулярной диагностике. Изобретенный в 1983 году, этот метод отличается высокой точностью, чувствительностью и скоростью проведения исследования. Его использование позволяет выявлять ряд патологий, среди которых такие, как ВИЧ, различные вирусные гепатиты, инфекции, передающиеся половым путем, туберкулез, боррелиоз, энцефалит и многие другие.

Подход для проведения диагностики на базе ПЦР предполагает выбор участка ДНК и многократное его дублирование с помощью специальных реагентов лаборатории. Для проведения диагностики исследуются различные биоматериалы, среди которых кровь, слюна, моча, выделения из половых органов, плевральная и спинномозговая жидкость, ткани плаценты и др.

Популярный молекулярный метод исследования под названием флуоресцентная гибридизация (FISH) обеспечивает возможность исследования нуклеотидных соединений в определенных участках хромосомы. Для этого используются специально меченные флуоресцентными маркерами короткие ДНК-последовательности, так называемые зонды. Такой подход в исследовании атипичных генов стал популярным не только в онкологии для обнаружения остаточных злокачественных клеток после проведения химиотерапии, но и в пренатальной диагностике для выявления вероятности возможности развития у плода врожденных пороков, а также в гематологии.

Возможность проведения анализа пообещала все большую чувствительность и точность в выявлении поврежденных фрагментов ДНК с погрешностью около 0,5%. Кроме того, важно учесть, что результат тестирования можно получить достаточно быстро — в течение не более 72-х часов. Тем не менее, следует отметить, что данная методика имеет несколько недостатков в том числе - FISH очень специфичен и может служить лишь для подтверждения или опровержения предполагаемого диагноза.

Микрочипирование - новый способ молекулярной диагностики, основанный на использовании зондов, маркированных флуоресцентными последовательностями ДНК. Как и в случае с методом ФЛГ, для анализа может использоваться любой биоматериал, в котором находится ДНК/РНК. Однако, в отличие от ФЛГ, здесь пробы сначала извлекают из пациентов и затем сравнивают с образцами на микрочипе.

Микрочип представляет собой основание из стекла, пластика или геля, на которое наносят микротесты длиной от 25 до 1000 нуклеотидов. Зонды, полученные после очистки биоматериала, совмещают на микротестах чипа и наблюдают за реакцией маркеров. Результаты готовы через 4-6 дней после забора материала.

Микрочипирование широко применяется в онкологии и кардиологии, в том числе для изучения генетической предрасположенности. Он точен и чувствителен, но, к сожалению, в России этот метод используется редко.

Молекулярная диагностика - это неинвазивный и точный метод обследования организма, который может применяться в разных областях медицины. Однако, в России этот метод еще не получил должного распространения, и не все клиники могут предложить подобную услугу.

Важно отметить, что информация о здоровье и медицине, представленная в статье, не предназначена для самодиагностики или самолечения. Она имеет только ознакомительный характер.

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *